Physics 120 - Final exam - 14 June 2018

Complete the design of the common emitter transistor amplifier using a 2N3904 NPN BJT, demonstrate that it operates as planned in terms of gain, dynamic range, and bandwidth.

<u>The left hand loop (Fig. A)</u> $-V_{BB} + I_{B}R_{B} + V_{BE} + I_{E}R_{E} = 0$ but $I_{B} = \frac{1}{\beta}I_{c}$ and $I_{E} = \frac{1+\beta}{\beta}I_{c}$

so
$$I_{c} = \frac{\beta}{1+\beta} \frac{V_{BB} - V_{BE}}{R_{F} + R_{B}/(1+\beta)}$$

Recall that $\beta >>1$ ($\beta \sim 100$ in this case) and choose R_B << (1+ β)R_E. Then

$$I_{c} \simeq rac{V_{BB} - V_{BE}}{R_{E}}$$

Gain: The output voltage is given by

$$V_{c} = V_{cc} - I_{c}R_{c} = V_{cc} - \frac{V_{BB} - V_{BE}}{R_{E}}R_{c} = \left(V_{cc} + \frac{R_{c}}{R_{E}}V_{BE}\right) - \frac{R_{c}}{R_{E}}V_{BB}$$

The output is equal to the collector voltage, V_{C_i} and is linear in V_{BB} . The voltage V_{BB} contains a constant as well as a signal component, δV_{BB} (**Fig. A,B**). The change δV_{BB} leads to a proportional change in the output, δV_C , *i.e.*,

$$\delta V_{c} \simeq -\frac{R_{c}}{R_{E}} \delta V_{BB}$$
 where the ratio "- R_{C} / R_{E} " is the voltage gain of the circuit.

Load line: The set-point, denoted $I_{C,Q}$ and $V_{CE,Q}$, are the values of I_C and V_{CE} with $\delta V_{BB} = 0$. The value of V_{CE} is bounded at by $V_{CE,Sat} = 0.2$ V and $V_{CC} = 15$ V.

Design constraints:

Choose $V_{CEQ} = V_{CC}/2$ to insure a (near) maximum voltage swing. Choose $I_{CQ} = 10$ mA, the optimum current for this BJT Choose |Gain| = 10, so $R_C = 10$ R_E

Satisfy the load-line relation
$$I_{CQ} \simeq \frac{V_{CC} - V_{CEQ}}{R_E + R_C} \simeq \frac{V_{CC}}{2R_C}$$
, which yields $R_C \simeq \frac{V_{CC}}{2I_{CQ}}$.

Satisfy the constraints $R_B \ll \beta R_E$. Since $\beta \ge 100$, select $R_B = 10 R_E$. Calculate $V_{BB} \approx V_{BE} + I_{C,Q}R_E$.

but $I_{E} = \frac{1+\beta}{\beta}I_{C} \simeq I_{C}$

The right hand loop (**Fig. A**)

 $-V_{cc} + I_{c}R_{c} + V_{ce} + I_{e}R_{e} = 0$

$$\label{eq:local_constraint} so \qquad I_c \simeq \frac{V_{cc} - V_{cE}}{R_E + R_c} \, .$$

This equation defines the "load line" for the transistor.

Your name:

Your student number:

Realization (note: confirm the value of all components prior to construction)

(1a-c) Pick standard values of resistors: R_E ≈ **75** Ω R_C ≈ **750** Ω R_B ≈ **750** Ω (1d) Calculate V_{BB}: V_{BB} ≈ **1.2 V** Convert from dual to single power supply with a voltage divider (**Fig. B**) to replace V_{BB} and R_B : $R_{B} \simeq \frac{R_{1}R_{2}}{R_{1}+R_{2}} \text{ and } V_{BB} \simeq \frac{R_{1}}{R_{1}+R_{2}}V_{CC} \text{ so that } R_{1} \simeq R_{B}\frac{V_{CC}}{V_{CC}-V_{BB}} \text{ and } R_{2} \simeq R_{B}\frac{V_{CC}}{V_{BB}}$ (1e,f) Pick standard values of resistors: R₂ ≈ <mark>10 kΩ</mark> R₁ ≈ 810 Ω (1g) Show that your choice satisfies $R_1 \ll R_{input}$, i.e., $R_1 \ll \beta R_E$, so that the input resistance does not contribute to the voltage divider. 810 Ω << 100*75 Ω = 7500 Ω **Testing** (*recall:* the oscilloscope and DMM inputs are not differential) (2a) Measure and record the actual value of V_{CE.Q} (how?): $V_{CE,Q} \approx$ (Call for a TA to demonstrate your measurement) Differential voltage from collector to emitter. This could be successive measurements. (2b) Measure and record the actual value $I_{C,Q}$ (how?): (Call for a TA to demonstrate your measurement) lc.o ≈ Series current along collector OR along emitter leg OR via voltage drop across R_c or across R_E. Drop across R_E is a single probe measurement and simplest. (2c) Pick a standard value of capacitor, or combined capacitors, to couple δV_{BB} through a highpass filter with cut-on frequency of $f_{High-pass} \sim 1.0 \text{ kHz}$ (Fig A,B) (*recall*: $f_{High-pass} = 1/(2\pi R_B C_B)$): $C_B \approx$ 0.21 µF OR two 0.1 µF capaciters in parallel (2d) Show that the output δV_C spans the full range of positive and negative values of δV_{BB} for an ~ 1 $V_{\text{peak-to-peak}}$ sine input at ~ 10 kHz (*note*: ensure Z_{out} = High for the function generator). Call for a TA to observe your demonstration (show δV_{BB} and δV_{C} on the oscilloscope) (2e) Measure the output $\delta V_{\rm C}$ as a function of frequency (*hint*: use "AC" coupling on the oscilloscope for ease). What is the actual value of the cut-on frequency, i.e., f_{3dB} for high-pass? f_{High-pass} ≈ (2f) What is the value of the cut-off frequency, i.e., f_{3dB} for low-pass? $f_{Low-pass} \approx$ (2g) What is the origin of the high-frequency filtering for flow-pass?

Your name:

Your student number: